

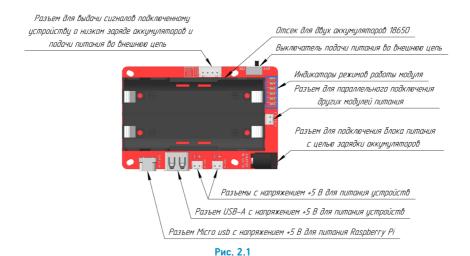
Электронный модуль «Источник питания Raspberry 4 A»

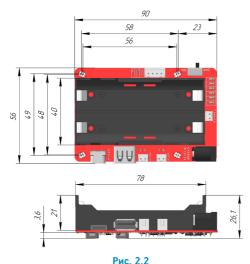
Артикул ПЭМ10.902-4А

Технические данные и руководство пользователя.

1. Назначение устройства

Электронный модуль «Источник питания Raspberry 4 A» (Рис. 1.1) является элементом системы управляющей электроники «Эвольвектор ВЕРТОР» (далее ВЕРТОР) и предназначен для организации автономного (мобильного) стабилизированного питания одноплатного компьютера Raspberry Pi. В модуле используются аккумуляторы, которые можно многократно перезаряжать. Это позволяет долговременно применять одпоплатный миникомпьютер для конструирования мобильных роботов.




Рис. 1.1

2. Конструкция модуля и назначение выводов (контактов)

Модуль выполнен в форме печатной платы, на которой смонтированы (Рис. 2.1):

- отсек для установки аккумуляторов типа 18650;
- выключатель питания подключенных устройств;

- разъемы USB Type C, USB-A и 2xXH-2,54-2P для подключения запитываемых устройств;

- группа индикаторов режимов работы модуля питания;
- разъем XH-2,54-4Р для выдачи сигналов внешнему запитываемому устройству о низком уровне заряда аккумуляторов и подаче питания во внешнюю цепь:
- разъем для подключения к внешнему блоку питания с целью зарядки установленных в модуль аккумуляторов;
- разъем XH-2,54-2P для подключения дополнительного модуля питания с целью увеличения суммарной емкости модуля и, как следствие, длительности его работы.

Плата имеет четыре крепежных отверстия под винты M3. Межосевое расстояние крепежных отверстий и физические размеры модуля представлены на рисунке 2.2. Расположение и форма крепежных отверстий на плате модуля питания совместимо с таковыми

на одноплатном компьютере Raspberry Pi и контроллере Вертор Стандарт версий 1.0 или 1.2. Это позволяет крепить данные устройства с помощью стоек одно над другим. Одновременно благодаря вытянутой форме отверстий и их расположению (расстояние между центрами кратно 8 мм) модуль питания совместим с конструкторами Эвольвектор, LEGO, MakeBlock, и может крепиться к их деталям с помощью стоек.

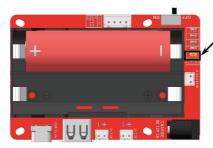
3. Принцип работы

Одноплатный компьютер Raspberry Pi является устройством, корректная и бесперебойная работа которого во многом определяется качеством подаваемого на него питания. Если речь идет о 4-м поколении Raspberry Pi, то для штатной работы компьютера необходимо обеспечить в линии его питания стабилизированное напряжение 5,1-5,3 вольта и ток не ниже 4 А (потребление тока возрастает при выполнении компьютером большого числа вычислений в единицу времени). В случае несоблюдения указанных параметров компьютер либо будет сообщать на

Рис. 3.1

экране монитора о недостаточном питании, либо не будет запускаться вовсе.

Именно эти требования по питанию и способен обеспечить «Источник питания Raspberry 4 A». Главной его функцией является функция перезаряжаемого, многократно используемого источника питания для одноплатного компьютера Raspberry Pi 4-го поколения. Для этого в него устанавливаются два литий-ионных аккумулятора типа 18650 с номинальным напряжением 3,7 В.



В связи с использованием аккумуляторных элементов и реализацией процесса их зарядки, модуль является относительно сложным и многорежимным устройством. К тому же он поставляется и используется в безкорпусном варианте. Поэтому для корректной работы с ним от пользователя потребуется соблюдать ряд правил и выполнять определенный набор действий.

1. При установке аккумуляторов необходимо соблюдать полярность (Рис. 3.1). Настоятельно рекомендуется использовать пару аккумуляторов одной и той же емкости для того, чтобы процессы их разряда и заряда протекали одинаково. В случае различной емкости батарей аккумулятор меньшей емкости будет разряжаться быстрей и автоматика индикации и защиты от низкого заряда будет работать некорректно. Все это приводит к ускоренному износу батарей.

Если аккумуляторы установлены в модуль ошибочно, то на это укажут светящиеся индикаторы BAT1 ERR и BAT2 ERR. В зависимости от того, какой именно элемент помещен в батарейный отсек неверно, может светиться первый, второй или оба сразу.

2. Особенностью работы модуля является то, что при отсутствии аккумуляторов в батарейном отсеке он переходит в заблокированное состояние и находится в нем до тех пор, пока не будет разблокирован. В заблокированном состоянии питание на выходы модуля не подается даже если батареи установлены правильно и полностью заряжены. Поэтому каждый раз, когда меняются или извлекаются и снова устанавливаются элементы питания, требуется выполнять разблокировку. Осуществляется она путем подачи напряжения 12 В от внешнего блока питания на разъем для зарядки. Сразу после разблокировки включится красный индикатор заряда батарей СН ОN, если они недостаточно заряжены (Рис. 3.3), или зеленый индикатор СН ОFF в случае достаточного уровня их заряда (Рис. 3.4).

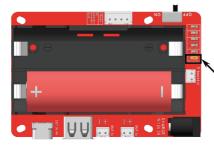


Рис.3.2

- 3. При извлечении штекера внешнего питания и переводе выключателя модуля в положение ON включится зеленый индикатор PWR ON и на выходных разъемах появится напряжение 5 В (Рис. 3.5).
- 4. По мере разряда аккумуляторов в процессе питания подключенных устройств напряжение и ток каждого из установленных аккумуляторов падает. При достижении на выходах аккумуляторов напряжения 6.4 В (приблизительно 3.2 В на каждом аккумуляторе) на модуле включается красный индикатор LOW BAT, который свидетельствует о низком заряде батарей и необходимости поставить модуль на зарядку (Рис. 3.6).
- 5. Заряд аккумуляторов выполняется путем подключения к модулю штекера 2.1х5.5 мм от любого внешнего блока питания, который способен выдавать постоянный ток не менее 3 А (именно таким током выполняется заряд) с напряжением 12 В. Как уже говорилось выше, о режиме заряда свидетельствует индикатор СН ОN. При этом допускается одновременные зарядка аккумуляторов и питание подключенных к модулю устройств (Рис. 3.7).

Время заряда разряженных аккумуляторов определяется двумя основными параметрами: текущей степенью разряда аккумуляторов и их емкостью. К примеру, время заряда полностью разряженных элементов питания с емкостью 2600 мАч составит около 1 часа.

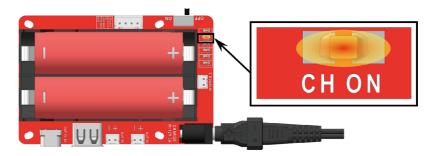


Рис. 3.3

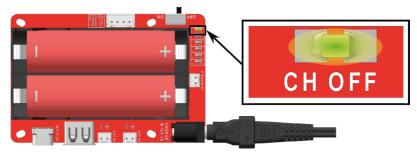


Рис. 3.4

Для удобства, ниже приведена таблица состояний и режимов работы модуля, в которой рассмотрены возможные ситуации и соответствующие им показания индикаторов. В столбцах с 1-го по 5-й указаны параметры, которые определяются действиями пользователя, а в столбцах с 6-го по 11 приведены показания индикаторов, отражающие режим и параметры работы модуля.

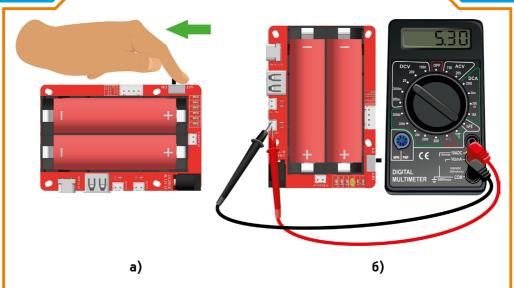


Рис. 3.5

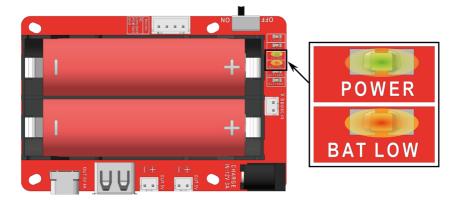


Рис. 3.6

- 1. Выключатель. Положение выключателя на плате. Он может быть включен (0N) в этом случае подается выходное напряжение питание от аккумуляторов к выходным клеммниками и разъемам, или выключен (0FF) напряжение на выходы не подается.
- 2. **UBX 12 В.** Здесь имеется ввиду подано ли внешнее питание от блока питания на модуль (ON) или нет (OFF).

- 3. **Uakk, В.** В ячейках данного столбца указывается значение напряжения на аккумуляторах, которое присутствует в данном режиме работы.
- 4. **Ивых**. С помощью данного параметра показывается, способен ли еще модуль обеспечить нужные требования по питанию подключенной Raspberry Pi (зеленая галочка) или не способен (красным крестик).
- 5. **Полярность ВАТ1**. Под данным параметром подразумевается верная (обозначена зеленой галочкой) или ошибочная (обозначена красным крестиком) ориентация аккумулятора №1 при его установке в батарейный отсек.
 - 6. Полярность ВАТ2. Аналогично для батареи №2.
 - 7. **BAT1 ERR**. Индикатор несоблюдения полярности батареи в отсеке №1.
 - 8. **BAT2 ERR.** Индикатор несоблюдения полярности батареи в отсеке №2.
 - 9. **CH ON**. Индикатор процесса зарядки батарей или отдельной батареи.
 - 10. **CH OFF.** Индикатор завершения процесса зарядки батарей или отдельной батареи.

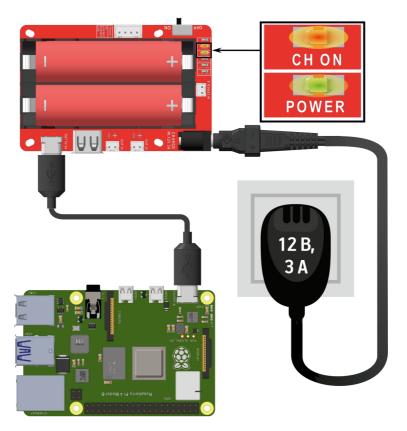


Рис. 3.7

- 11. **PWR ON**. Индикатор подачи напряжения питания на выходные разъемы и клеммник (когда индиктор светится питание подано).
 - 12. **LOW BAT**. Индикатор низкого уровня заряда батарей (обе батареи выдают не более, чем 3,2 В).

Выклча- тель	Uвх 12 В	Uакк, B	Ивых, В	Поляр- ность ВАТ1	Поляр- ность ВАТ2	BAT1 ERR	BAT2 ERR	CH ON	CH OFF	PWR ON	LOW BAT
1	2	3	4	5	6	7	8	9	10	11	12
OFF	OFF	0-8,4	X	×	/	**					
OFF	OFF	0-8,4	×	>	×		**				
OFF	OFF	0-8,4	×	×	×	**	**				
OFF	ON	0-8,4	×	×	>	**		***	**		
OFF	ON	0-8,4	×	>	×		**	***	***		
OFF	ON	0-8,4	×	×	×	**	**	***	**		
ON	ON	0-8,4	>	×	>	**		***	**	**	
ON	ON	0-8,4	>	>	×		**	***	**	**	
ON	ON	0-8,4	\	×	×	**	**	***	**	**	
OFF	OFF	<5,8	×	>	>						
OFF	ON	<5,8	×	>	\			***			
ON	OFF	<5,8	×	>	\						
ON	ON	<5,8	×	>	>			***		**	
OFF	ON	5,8-6,4	×	>	>			***			**
ON	OFF	5,8-6,4	>	>	>					**	**
ON	ON	5,8-6,4	/	/	/			**		**	**
OFF	ON	6,4-8,4	×	\	/			***			
ON	OFF	6,4-8,4	/	/	/					**	
ON	ON	6,4-8,4	/	\	/			**		***	
OFF	ON	>8,4	X	/	V						

ON	OFF	>8,4	>	\	>			**	
ON	ON	>8,4	>	>	>			***	

4. Правила техники безопасности

Несмотря на то, что выходное напряжения у модуля «Источник питания Raspberry 4 A» совсем небольшое, плата выдает в нагрузку значительный ток в 4 ампер. Помимо этого в модуле используются литий-ионные батареи, требующие аккуратного обращения. В совокупности это требует соблюдения мер предосторожности при работе с модулем.

Поэтому в связи с тем, что данное оборудование будет использоваться в образовательных и учебных целях, ниже приведены правила техники безопасности, которые помогут избежать неприятных и нештатных ситуаций при выполнении проектов:

1. Используйте в модуле только качественные аккумуляторы от проверенных производителей.

2. Не оставляйте без присмотра на длительное время модуль с установленными в него аккумуляторами. Если в ближайшие несколько недель или месяцев не планируется использовать модуль питания по прямому назначению, извлеките аккумуляторы из батарейного отсека.

3. Модуль с установленными и полностью заряженными батареями старайтесь брать таким образом, чтобы не касаться руками или другими частями тела металлических частей с обратной стороны платы.

4. Запрещается брать модуль влажными или грязными руками! Это может привести к некорректной работе устройства.

5. Запрещается выполнять действия, приводящие к намеренному повреждению литий-ионных аккумуляторных батарей 18650! Это может привести к возгоранию!

6. Запрещается класть модуль с установленными в отсек батареями или подключенным внешним питанием на токопроводящие поверхности (например металлические основания). Это может привести к короткому замыканию!

7. Соблюдайте осторожность при работе с металлическим инструментом (отвертки или гаечные ключи) или крепежом (гайки, винты) в непосредственной близости с токопроводящими частями модуля. Запрещается касаться или перемыкать контакты запаянных на модуль электронных компонентов.

8. Используйте для зарядки аккумуляторов, установленных в модуль, исключительно подходящие по характеристиками блоки питания (напряжение 12 В, ток не менее 3 А) во избежание их перегрева и выхода из строя.

9. Устанавливайте модуль на робототехнические модели с помощью стоек так, чтобы обеспечивалось хорошее охлаждение платы: сохранялся зазор между модулем и основанием (не менее 10 мм) и плата не была накрыта сверху тканями или воздухонепроницаемыми материалами.

10. При установке модуля на робототехнические модели (мобильные или манипуляционные) обязательно необходимо предусматривать его защиту от механических повреждений в случае опрокидывания модели и контакта с его манипуляционными элементами.

11. Запрещается проливать воду или иные жидкости на плату. Это может привести к некорректной работе устройства или короткому замыканию и выходу платы из строя!

- 12. В случае чрезмерного нагрева элементов устройства, появления запаха гари или громких шумов в работе, незамедлительно отключите модуль от источников внешнего питания и переведите выключатель на плате в положение OFF.
- 13. Использование модуля для сборки устройств детьми младше 12 лет разрешается только под присмотром взрослых.

4. Технические характеристики

Наименование характеристики	Значение
Типоразмер, мм	56x90
Выходное напряжение, В	5
Максимальный выходной ток	4 A
Тип используемых аккумуляторов	18650
Количество устанавливаемых аккумуляторов	2
Наличие функции зарядки аккумуляторов	Да
Входное напряжение для зарядки аккумуляторов, В	12
Минимальный ток, который должен выдавать внешний блок питания для зарядки аккумуляторов, А	3
Тип разъема для зарядки аккумуляторов, мм	2,1x5.5
Индикация неверной полярности установки аккумуляторов	Да
Индикация процесса заряда аккумуляторов	Да
Индикация окончания зарядки аккумуляторов	Да
Индикация подачи питания на выходные разъемы	Да
Индикация разряда аккумуляторов до напряжения менее 3,2 B	Да
Защита от короткого замыкания на выходе модуля	Да
Автоматическое отключение модуля (блокировка) при разряде аккумуляторов до напряжения менее 2,9 В	Да

5. Условия гарантии

000 «Эвольвектор» гарантирует работоспособность электронного модуля на протяжении всего гарантийного срока эксплуатации, который составляет 12 месяцев с момента приобретения устройства. Также гарантируется совместимость модуля с другими устройствами системы управляющей электроники ВЕРТОР. Гарантийные обязательства производителя распространяются только на ту продукцию, которая не имеет повреждений и не выведена из строя в результате неверных действий пользователя.

По вопросам гарантийного обслуживания, а также по всем техническим и информационным вопросам можно обращаться на электронную почту:

info@evolvector.ru

help@evolvector.ru

а также по телефону +7 (499) 391-01-05

Адрес для корреспонденции: 143300, Московская область, г. Наро-Фоминск, ул. Московская, д.15.